발간논문

Home > KJMM 논문 > 발간논문

Vol.62, No.1, 12 ~ 22, 2024
Title
Transient Liquid-Phase Sinter-Bonding Characteristics of a 5 μm Cu@Sn Particle-Based Preform for High-Speed Die Bonding of Power Devices
한병조 Byeong Jo Han , 조상호 Sang Ho Cho , 전강록 Kang Rok Jeon , 이종현 Jong-hyun Lee
Abstract
To ensure the high-temperature stability of a bondline under next-generation power devices such as SiC semiconductors, a die bonding test was performed by transient liquid-phase (TLP) sinter-bonding using a Sn-coated Cu (Cu@Sn) particle-based preform. Compared to the existing 20 min-bonding result using a 30 μm Cu@Sn particle-based preform, a 5 μm Cu@Sn particle-based preform was used to significantly reduce the bonding time to 5 min, and the optimal levels of the amount of Sn in the Cu@Sn particles, the thicknesses of Sn surface finish layers on the chip and substrate, and compression pressure during the bonding were investigated. The Sn content in the Cu@Sn particles significantly changed the microstructure, including the porosity of the prepared preform. The preform porosity of 0.01% was confirmed after the formation of sufficient Sn shells with an average thickness of about 602 nm at Sn 30 wt%. In addition, in the preform with Sn 30 wt% content, the Sn phase was almost depleted after 3 min after annealing at 250 °C. The Sn finish layer was evaluated in the thickness range of 0.63-4.12 μm, and it was observed that the shear strength of the formed bondline tended to increase with increasing pressure for all Sn layer thicknesses. In particular, when the bonding was carried out at a pressure of 2 MPa using a dummy Cu chip and substrate coated with a 1.53 μm thick Sn layer, the best shear strength value of 36.89 MPa was achieved. In this case, all the Sn phases transformed into intermetallic compound phases of Cu6Sn5 and Cu3Sn, and all the phases formed within the bondline, including Cu, exhibited high melting-point characteristics. Therefore, it was determined that there would be no remelting of the bondline or a drastic decrease in mechanical properties in a high-temperature environment below 300 ℃, as initially intended. By increasing the content of the Sn shell up to 30 wt%, it was possible to achieve a nearly full density (porosity: 0.3%) bondline structure, due to the rearrangement behavior of particles, by maintaining liquid Sn for a long time during the bonding process. In conclusion, the optimal Sn finish thickness was determined to be at the level of 1.5 μm, and the optimal pressure was at the level of 2 MPa. The short bonding time of 5 min represents a significant advance in TLP bonding processes, and it is expected to contribute to a substantial improvement in the die bonding of future SiC power devices. (Received 31 August, 2023; Accepted 24 October, 2023)
Key Words
Sn-coated Cu, transient liquid-phase sintering, preform, die bonding, intermetallic compound
| PDF
대한금속∙재료학회 (06633) 서울시 서초구 서초대로 56길 38 대한금속∙재료학회 회관 (서초1동 1666-12번지)
Tel : 070-4266-1646 FAX : 02-557-1080 E-mail : metal@kim.or.kr
Copyright ⓒ 2013 사단법인 대한금속∙재료학회 All rights reserved.