발간논문

Home > KJMM 논문 > 발간논문

Vol.61, No.5, 338 ~ 347, 2023
Title
High Temperature Deformation and Microstructural Evolution of Homogenized AA 2026 Alloy
강현우 Hyeonwoo Kang , 김수빈 Soobin Kim , 장병록 Byounglok Jang , 김희국 Heekook Kim
Abstract
AA 2026 is an improved version of AA 2024, an alloy with added Zr to reduce Fe and Si content and inhibit recrystallization during hot working. Al 2026 alloy has high strength and high damage resistance, so it is widely used in aircraft parts. In this study, in order to investigate the hot workability of AA 2026 and to optimize the hot forming parameters, hot compression tests were conducted in the temperature range of 300 to 450 ℃, at a strain rate of 0.01 to 10 and in the 50% strain section. The true stress-true strain curve showed a dynamic softening phenomenon while the stress increased rapidly at a small strain and then remained steady. In order to evaluate its high temperature processability, the constitutive equations for flow stress, temperature, and strain were quantified based on the Arrhenius equation, and a process strain map was prepared. The peak stress accuracy of the constitutive equation was about 98.2%, which was consistent with the experimental data of AA 2026 under strain rate and temperature conditions. In addition, scanning electron microscopy (SEM) and backscattered electron diffraction pattern analyzer (EBSD) analyses were conducted to confirm the mechanism of the dynamic softening phenomenon. The CDRX phenomenon was confirmed under the high strain condition in the low temperature region and the DDRX phenomenon in the low strain condition in the high temperature region. (Received 18 November, 2022; Accepted 16 February, 2023)
Key Words
hot compression test, flow behavior, constitutive equation, processing map, recrystallization
| PDF
대한금속∙재료학회 (06633) 서울시 서초구 서초대로 56길 38 대한금속∙재료학회 회관 (서초1동 1666-12번지)
Tel : 070-4266-1646 FAX : 02-557-1080 E-mail : metal@kim.or.kr
Copyright ⓒ 2013 사단법인 대한금속∙재료학회 All rights reserved.