발간논문

Home > KJMM 논문 > 발간논문

Vol.60, No.8, 570 ~ 577, 2022
Title
A Study on Reduced Graphene Oxide in Large-area Transparent Heaters for Defrosting
조승근 Seung Geun Jo , 문해인 Hae-in Moon , 김영원 Young Won Kim , 도환수 Hwan Soo Dow , 이정우 Jung Woo Lee
Abstract
Transparent heaters are promising devices because of their versatile applications in vehicles, smart windows, and sensors, etc. Indium tin oxide is widely used for transparent heater materials due to its high electronic conductivity and visible light transmittance. However, the cost of indium is too high, and its fabrication needs sophisticated processes, so that many studies have focused on alternative materials which are inexpensive and easy-to-synthesize. Graphene is a two-dimensional material in which carbon atoms bond to form a hexagonal structure, and it can be an alternative material due to its superior electronic/ thermal conductivity and cost-effectiveness. Here, we chemically treated graphite to synthesize large-sized graphene oxide (LGO), and coated it on a glass substrate, followed by reduction using hydrogen iodide for large-sized reduced graphene oxide (LrGO) on glass. From surface characterizations, we confirmed that the lateral size of the LGO was over 50 μm and the LGO sheets were uniformly coated on the glass, which minimized intersheet contact resistance. Structural characterizations demonstrated that the LGO sheets were reduced to LrGO and the LrGO sheets coated on the glass showed a transmittance of 76.2 % at 550 nm with a sheet resistance of 0.98 kΩ. Finally, the temperature of the substrate increased up to 30 oC when 30 V of voltage was applied for 5 min, and the frost on the glass surface vanished within 1 min. (Received 19 May, 2022; Accepted 30 May, 2022)
Key Words
large-sized reduced graphene oxide, solution process, large-area transparent heater, defrosting
| PDF
대한금속∙재료학회 (06633) 서울시 서초구 서초대로 56길 38 대한금속∙재료학회 회관 (서초1동 1666-12번지)
Tel : 070-4266-1646 FAX : 02-557-1080 E-mail : metal@kim.or.kr
Copyright ⓒ 2013 사단법인 대한금속∙재료학회 All rights reserved.