발간논문

Home > KJMM 논문 > 발간논문

Vol.60, No.7, 531 ~ 537, 2022
Title
Enhancement of thermoelectric power factor by modulation doping of bulk polycrystalline SnS / thin film PEDOT:PSS bilayer
이동욱 Dongwook Lee
Abstract
Modulation doping occurs in a heterojunction where a charge carrier-rich material transfers charge to a carrier-deficient material. The modulation-doped material is intentionally selected to have higher charge carrier mobility than the modulation dopant material, so that the overall electrical conductivity can be boosted. Although this modulation doping strategy has proven effective in enhancing power factor in thermoelectrics, selection criteria for such semiconductor couples have not been explicitly clarified, resulting in only a few discovered semiconductor couples available for modulation doping-driven thermoelectric systems [1-4]. Here, we (i) report an electronic band structure-based guideline to actualize modulation doping, (ii) reveal that hole-rich PEDOT:PSS can modulation dope otherwise undoped tin monosulfide (SnS) in their bilayered structure, (iii) prove that modulation doping is responsible for thermoelectric power factor enhancement by comparing computational and experimental Seebeck coefficient and electrical conductivity values. The optimized PEDOT:PSS thin film / SnS pellet bilayered structure had a 134.7 fold improvement in electrical conductivity and a 93.6 fold power factor enhancement over those of undoped SnS, with only a ~ 20 % decrease in Seebeck coefficient. The modulation doping effect can result in further power factor improvement when SnS becomes a nanoscale thin film or nanoparticles in the future. (Received 22 March, 2022; Accepted 2 May, 2022)
Key Words
modulation doping, PEDOT:PSS, tin monosulfide (SnS), seebeck coefficient, power factor, electrical conductivity
| PDF
대한금속∙재료학회 (06633) 서울시 서초구 서초대로 56길 38 대한금속∙재료학회 회관 (서초1동 1666-12번지)
Tel : 070-4266-1646 FAX : 02-557-1080 E-mail : metal@kim.or.kr
Copyright ⓒ 2013 사단법인 대한금속∙재료학회 All rights reserved.