Abstract |
Supercapacitor electrode slurry is prepared for mass production by mixing activated carbon powder, conductive agent, and binder, which is then deposited on a substrate using the doctor-blade method. Polyvinylidene fluoride (PVDF) and 1-methyl-2-pyrrolidone (NMP) are used as binder and solvent, respectively, to form the electrode slurry on a metal substrate. In this study, ethyl cellulose (EC) is evaluated as a binder to prepare an electrode on an indium-tin-oxide (ITO) substrate obtaining transparent supercapacitors. Terpineol and isopropyl alcohol (IPA) are compared as suitable solvents for the EC binder. When terpineol is employed as a solvent, the conductive agent is uniformly deposited around the activated carbon powder. An electrode prepared using EC and terpineol exhibits slightly lower specific capacitance and rate performance than that using conventional PVDF and NMP. However, the electrode prepared using EC and terpineol securely adheres to the electrode components, resulting in a robust electrode. In contrast, an electrode prepared using EC and IPA exhibits high charge transfer resistance at the interface of the electrode/electrolyte, leading to a low specific capacitance and rate performance. Thus, ecofriendly EC and terpineol can substitute the conventional PVDF and NMP for depositing activated carbon powder on an ITO substrate, while improving the specific capacitance of manufactured electrodes.
(Received September 1 2021; Accepted September 17, 2021) |
|
|
Key Words |
ethyl cellulose, terpineol, indium-tin-oxide, specific capacitance, charge transfer resistance, adhesion |
|
|
|
|