발간논문

Home > KJMM 논문 > 발간논문

Vol.59, No.10, 724 ~ 732, 2021
Title
Charge Transport and Thermoelectric Properties of Sn-Doped Tetrahedrites Cu12Sb4-ySnyS13
Hee-jae Ahn , Il-ho Kim
Abstract
In this study, tetrahedrite compounds doped with Sn were prepared by mechanical alloying and hot pressing, and their charge transport and thermoelectric properties were analyzed. X-ray diffraction analysis revealed that both the synthetic powders and sintered bodies were synthesized as a single tetrahedrite phase without secondary phases. Densely sintered specimens were obtained with relatively high densities of 99.5%-100.0% of the theoretical density, and the component elements were distributed uniformly. Sn was successfully substituted at the Sb site, and the lattice constant increased from 1.0348 to 1.0364 nm. Positive signs of the Hall and Seebeck coefficients confirmed that the Sn-doped tetrahedrites were p-type semiconductors. The carrier concentration decreased from 1.28 × 1019 to 1.57 × 1018 cm-3 as the Sn content decreased because excess electrons were supplied by doping with Sn4+ at the Sb3+ site of the tetrahedrite. The Seebeck coefficient increased with increasing Sn content, and Cu12Sb3.6Sn0.4S13 exhibited maximum values of 238-270 μVK-1 at temperatures of 323-723 K. However, the electrical conductivity decreased as the amount of Sn doping increased. Thus, Cu12Sb3.9Sn0.1S13 exhibited the highest electrical conductivity of (2.24-2.40) × 104 Sm-1 at temperatures of 323-723 K. A maximum power factor of 0.73 mWm-1K-2 was achieved at 723 K for Cu12Sb3.9Sn0.1S13. Sn substitution reduced both the electronic and lattice thermal conductivities. The lowest thermal conductivity of 0.49-0.60Wm-1K-1 was obtained at temperatures of 323-723 K for Cu12Sb3.6Sn0.4S13, where the lattice thermal conductivity was dominant at 0.49-0.57 Wm-1K-1. As a result, a maximum dimensionless figure of merit of 0.66 was achieved at 723 K for Cu12Sb3.9Sn0.1S13. (Received July 12, 2021; Accepted July 28, 2021)
Key Words
thermoelectric, tetrahedrite, mechanical alloying, hot pressing
| PDF
대한금속∙재료학회 (06633) 서울시 서초구 서초대로 56길 38 대한금속∙재료학회 회관 (서초1동 1666-12번지)
Tel : 070-4266-1646 FAX : 02-557-1080 E-mail : metal@kim.or.kr
Copyright ⓒ 2013 사단법인 대한금속∙재료학회 All rights reserved.