Abstract |
Laser surface heat treatment and laser nitriding processes were applied using selective surface modification techniques to investigate phase transformation, microstructural evolution, and surface hardening behaviors for two types of plastic injection mold steels, AISI 1045 and P21. During laser surface heat treatment, a 245% hardness increase compared to that of the base metal (290 HV) was achieved due to martensite transformation of the AISI 1045 steel. However, for the AISI P21 steel, hardness within the heat-treated zone was largely unchanged from that of the base metal (410 HV) despite being accompanied by martensite transformation. Compared to that of the base metal, this static hardness behavior of the heat treated P21 steel was due to coarsening of Cu particles induced by the laser irradiation. To overcome the static hardness behavior of P21 steel, laser nitriding was used. The laser-nitrided specimen (at 4500 J/mm heat input) was approximately 40% (577 HV) harder than the base metal (410 HV) and was highly correlated with nitride formation. Nitrogen successfully penetrated the surface of the specimen during laser irradiation and formed a nitrided layer mainly composed of an AlN phase. Thus, the surface hardening behavior of AISI P21 steel after laser nitriding could be largely attributed to the AlN phase development.
(Received July 16, 2019; Accepted October 16, 2019) |
|
|
Key Words |
plastic injection mold steels, surface modification, laser surface heat treatment, laser nitriding, nitride |
|
|
|
|