Abstract |
An excellent grain-oriented electrical steel is composed of grains with exact Goss orientation. In order to produce this, it is important to control the Goss-oriented grains during the cold-rolling process. In this study, textures measured by X-ray diffraction (XRD) and electron backscatter diffraction (EBSD) were analyzed for 1, 10, and 36-pass cold-rolled sheets at a constant total thickness reduction rate of 89% in Fe- 3.2 wt% Si grain-oriented electrical steel. After cold rolling, strong α-fiber textures and relatively weak γ-fiber textures were developed in all specimens, regardless of the number of rolling passes. On the surface of the 36-pass rolled specimen, a weak α-fiber texture and a relatively strong η-fiber texture developed compared with the other specimens. The Goss-oriented grains were mainly found in the shear band or micro band, which show that their fraction increases as the number of rolling passes increases, especially within the surface layer. As the number of Goss-oriented grains increased, the exactness of their orientation improved. It was determined that it is possible to obtain a grain-oriented electrical steel with a high-quality Goss orientation using a process such as subsequent recrystallization.
(Received August 24, 2017; Accepted December 8, 2017) |
|
|
Key Words |
electrical materials, cold-rolling, EBSD, texture |
|
|
|
|