Abstract |
This study manufactured Fe-Cr-Ni-based alloy (HK30) using the metal injection molding (MIM) process and investigated the microstructure and room·high temperature mechanical properties of the material. The effect of hot isostatic pressing (HIP) on properties was also examined. The average grain sizes were 24.1 μm for an MIM specimen and 29.1 μm for an MIM+HIP specimen. Microstructure and phase analysis results confirmed that the matrix mainly consisted of γ-Fe, and Cr23C6 phase. To evaluate the mechanical properties of the material, tensile tests were performed at room temperature and 900 ℃. The tensile tests at room temperature indicated that the MIM and MIMTHIP specimens showed tensile strength of 609.6 MPa and 645.0 MPa, and elongation of 32.7% and 43.7%, respectively. In both strength and elongation, the MIM+HIP sample had greater performance. The tensile results at 900 ℃ also showed that the HIP+MIM specimen had higher strength and elongation. This was attributed to fewer macro cracks, denser structures and finer distribution of Nb based carbide due to the additional HIP. This study also discussed the deformation behavior of MIM material at room·high temperatures.
(Received August 21, 2017; Accepted November 16, 2017) |
|
|
Key Words |
metal injection molding, Fe-Cr-Ni based alloy, hot isostatic pressing, microstructure, high temperature, mechanical properties |
|
|
|
|