Abstract |
Numerical modeling of the self-propagating high temperature synthesis (SHS) of CuxNiyZn1-x-y Fe2O4 ferrites was carried out using the finite element method, to control the combustion synthesis behaviors of the ferrites. Additional pre-heating above 300 ℃ caused the combustion temperature at the inner surface of the reactant compact to completely propagate the SHS reaction. The porous CuxNiyZn1-x-yFe2O4 ferrites formed by the SHS were ball-milled and then magnetically separated and classified to obtain quasi-nano-sized powders. The reitveld refinement estimated that the SHS product formed at room temperature was about 64% ternary ferrites, while that formed with 598 K preheating was about 85% ternary ferrites.
(Received May 12, 2017; Accepted July 19, 2017) |
|
|
Key Words |
nano-powders, CuNiZn-ferrite, SHS method, FEM |
|
|
|
|