Vol.55, No.4, 274 ~ 284, 2017
|
Title |
Design of Silicon Plano Convex Lens for Optimized Light Coupling Between Laser Diodes and Single Mode Optical Fiber |
황인엽 In Yup Hwang , 박종오 Jongoh Park , 하준석 Jun-seok Ha , 류상완 Sang-wan Ryu |
|
|
|
Abstract |
High speed and large capacity optical communication networks are needed to meet the demands of increased traffic being created by mobile services. Advanced optical communication systems are based on high performance optical device modules that have small footprints and low power consumption. A microlens with a short coupling length and high coupling efficiency is an essential component of these compact optical modules, and silicon is the most widely studied material for this purpose because of its large refractive index at optical communication wavelengths. We used CODE V to simulate the coupling efficiency and the coupling tolerance of an optical system composed of a laser diode and an optical fiber coupled through a silicon lens. The maximum coupling efficiency for spherical lenses varied from -0.4 to -0.8 dB depending on the radius of curvature while -0.2 dB coupling loss was obtained with an optimized aspherical lens. Aspherical lenses exhibited larger coupling efficiencies while their coupling tolerance was slightly degraded. (Received May 18, 2016; Accepted August 5, 2016) |
|
|
Key Words |
silicon lens, plano convex lens, optical coupling system, coupling efficiency, align tolerance |
|
|
|
|