Abstract |
The corrosion behavior of low alloy steel containing Cu, Sb and 409L stainless steel was investigated for application in the low-temperature section of a flue gas desulfurization (FGD) system. The electrochemical properties were evaluated by potentiodynamic polarization testing and electrochemical impedance spectroscopy (EIS) in 16.9 vol% H2SO4 + 0.35 vol% HCl at 60 ℃. The inclusions in these steels were identified by electron probe microanalyzer (EPMA). The corrosion products of the steels were analyzed using scanning electron microscope (SEM) with energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM). The corrosion rate of the low alloy steel containing Cu, Sb was about 100 times lower than that of 409L stainless steel. For stainless steel without passivation, active corrosion behavior was shown. In contrast, in the low alloy steel, the Cu, Sb compounds accumulated on the surface improved the corrosion resistance by suppressing the anodic dissolution reaction. †(Received July 30, 2015; Accepted February 22, 2016) |
|
|
Key Words |
low alloy steel, copper, precipitation, corrosion, flue gas desulfurization (FGD) system |
|
|
 |
|