발간논문

Home > KJMM 논문 > 발간논문

Vol.50, No.4, 338 ~ 344, 2012
Title
Effects of cp-Ti Surface Roughness and Directionality on Initial Cell Attachment Behaviors
Dong Hoon Shin , Sung Su Chun , Myun Whan Ahn , In Hwan Song , Su Kyoung Kim
Abstract
The early osseointegration of titanium (Ti) dental implants is related to the initial cell morphology. The morphology of the cells (mesenchymal stem cells, MSC) was observed on three different Ti disc surfaces, which were mechanically treated by polishing, blasting, and scratching. A non-directional surface (isotropic texture) was obtained by the blasting of HA grits on cp-Ti discs, and a unidirectional surface (anisotropic texture) was obtained by the scratching of SiC papers. The cell attachment and arrangement in the initial periods were quite similar, but those in the later periods were significantly affected by the texture of the cp- Ti discs. After 1 week, the blasted Ti discs showed non-directional arrangement or spreading of the cells, whereas the scratched cp-Ti discs showed unidirectional properties parallel to the direction of the scratched grooves on the surface. The surface roughness of the cp-Ti discs significantly affects cell proliferation. Cell proliferation on the blasted and scratched surfaces was about 60% and 40% higher compared to the control result (polishing group) after 1 week (P<0.05). Cell proliferation on the blasted and scratched surfaces after 1 week was slightly enhanced with increasing surface roughness. It is believed that the direction of cell attachment and arrangement is closely related to the surface texture of the substrate surfaces, but cell proliferation after a relatively long period of time is directly enhanced by the surface roughness, not by the surface texture.
Key Words
biomaterials, osseointegration, cell behavior, polished, blasted, scratched, surface roughness
| PDF
대한금속∙재료학회 (06633) 서울시 서초구 서초대로 56길 38 대한금속∙재료학회 회관 (서초1동 1666-12번지)
Tel : 070-4266-1646 FAX : 02-557-1080 E-mail : metal@kim.or.kr
Copyright ⓒ 2013 사단법인 대한금속∙재료학회 All rights reserved.