발간논문

Home > KJMM 논문 > 발간논문

Vol.49, No.4, 281 ~ 291, 2011
Title
Selective Surface Oxidation of 590MPa TRIP Steel and Its Effect on Hot-Dip Galvanizability
김성환 Seong Hwan Kim , 임준모 Jun Mo Im , 허주열 Joo Youl Huh , 이석규 Suk Kyu Lee , 박노범 Rho Bum Park , 김종상 Jong Sang Kim
Abstract
In order to gain better understanding of the selective surface oxidation and its influence on the galvanizability of a transformation-induced plasticity (TRIP) assisted steel containing 1.5 wt.% Si and 1.6 wt.% Mn, a model experiment has been carried out by depositing Si and Mn (each with a nominal thickness of 10 nm) in either monolayers or bilayers on a low-alloy interstitial-free (IF) steel sheet. After intercritical annealing at 800℃ in a N2 ambient with a dew point of -40℃, the surface scale formed on 590 MPa TRIP steel exhibited a microstructure similar to that of the scale formed on the Mn/Si bilayer-coated IF steel, consisting of Mn2SiO4 particles embedded in an amorphous SiO2 film. The present study results indicated that, during the intercritical annealing process of 590 MPa TRIP steel, surface segregation of Si occurs first to form an amorphous SiO2 film, which in turn accelerates the out-diffusion of Mn to form more stable Mn-Si oxide particles on the steel surface. During hot-dip galvanizing, particulate Fe3O4, MnO, and Si-Mn oxides were reduced more readily by Al in a Zn bath than the amorphous SiO2 film. Therefore, in order to improve the galvanizability of 590 TRIP steel, it is most desirable to minimize the surface segregation of Si during the intercritical annealing process.
Key Words
metals, annealing, oxidation, scanning electron microscopy, TRIP steel, hot-dip galvanizing
| PDF
대한금속∙재료학회 (06633) 서울시 서초구 서초대로 56길 38 대한금속∙재료학회 회관 (서초1동 1666-12번지)
Tel : 070-4266-1646 FAX : 02-557-1080 E-mail : metal@kim.or.kr
Copyright ⓒ 2013 사단법인 대한금속∙재료학회 All rights reserved.