The present study aims at interpreting the effect of grain size on fracture toughness in the transition region of Mn-Mo-Ni low-alloy steels. Three kinds of steels with different austenite grain sizes were fabricated, and their microstructures and mechanical properties were examined. Elastic-plastic cleavage fracture toughness,K_Jc, was determined by 3-point bend tests of precracked Charpy V-notch (PCVN) specimens according to ASTM E1921 standard test method. When the austenite grain size decreased, the total number of carbides increased, while the size and the aspect ratio of carbides decreased. Local fracture stresses, estimated from a theoretical stress distribution in front of a crack tip, were found to be mainly determined by the 92%th size of carbides. Cross-sectional areas beneath fracture surfaces were observed to understand microstructural features to affect the cleavage crack propagation behavior. The results showedd that measured cleavage fracture units were smaller than austenite grain sizes, indicating that packet boundaries as well as austenite grain boundaries played an important role in the cleavage crack propagation. Based on the electron back-scatter diffraction (EBSD) results, the cleavage fracture units could also be matched with the effective grain sizes determined by the misorientation tolerance angle of 25˚. |
|